
Notions abordées:

- 5.1 Moment cinétique

- 5.2 Mouvement à force centrale 

- 5.3 Un peu d’histoire et lois de Kepler 

- 5.4 Loi de la gravitation universelle de Newton

- 5.5 Champ de gravitation

But: 

- Utiliser la conservation du moment cinétique

- Identifier les trajectoires
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Cinquième partie:

Gravitation, moment cinétique
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5.1 Moment cinétique et moment d’une force

On définie le vecteur moment cinétique (ou angulaire) par 

rapport à l’origine du repère O:

𝐿𝐴 = 𝐴𝑂 𝑚Ԧ𝑣 + 𝐿𝑂

𝐿𝐴 = 𝐴𝑃 𝑚 Ԧ𝑣 = 𝐴𝑂 + 𝑂𝑃  𝑚 Ԧ𝑣 = 𝐴𝑂 𝑚 Ԧ𝑣 + 𝑂𝑃 𝑚 Ԧ𝑣

Ԧ𝑣(𝑡)

P

ො𝑥

ො𝑦

Ƹ𝑧

On peut définir le moment cinétique par rapport à n’importe quel 

point A:

On définie le vecteur moment d’une force 𝑭 appliquée à P 

par rapport à l’origine du repère O:

Théorème du moment cinétique:𝑴𝑶 =
𝒅𝑳𝑶
𝒅𝒕

𝑳𝑶 = 𝑶𝑷 𝒎𝒗 = 𝒓  𝒎𝒗

𝑴𝑶 = 𝑶𝑷 𝑭

𝒅𝑳
𝑶

𝒅𝒕
=

𝒅 𝑶𝑷

𝒅𝒕
 𝒎𝒗+ 𝑶𝑷

𝒅(𝒎𝒗)

𝒅𝒕
= 𝒗  𝒎𝒗+ 𝑶𝑷 𝑭 = 𝑶𝑷 𝑭 = 𝑴𝑶

Ԧ𝐹
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5.1 Ex.: tabouret tournant

𝑑 𝑑
𝑚 𝑚

𝑁

𝑚 Ԧ𝑔 𝑚 Ԧ𝑔

ෝ𝑒𝑟

𝜔

𝐿𝑂 = 𝑂𝑃1 ∧ 𝑚 Ԧ𝑣1 + 𝑂𝑃2 ∧ 𝑚 Ԧ𝑣2

P1
P2ෝ𝑒𝑧 ෞ𝑒



Ԧ𝑣2 = − Ԧ𝑣1 = 𝜔𝑑 Ƹ𝑒𝜙

𝐿𝑂 = 2𝑑2𝑚𝜔 Ƹ𝑒𝑧

𝑀𝑂 = 𝑂𝑃1 𝑚 Ԧ𝑔 + 𝑂𝑃2 𝑚 Ԧ𝑔 = 0
𝑑𝐿𝑂
𝑑𝑡

= 0

𝑑2𝜔 = 𝑐𝑠𝑡𝑒



• Une force Ԧ𝐹 est dite centrale si elle pointe toujours en direction 

d’un même point O:   Ԧ𝐹 Ԧ𝑟 ∥ Ԧ𝑟

• Si une force centrale Ԧ𝐹( Ԧ𝑟) est conservative, alors le potentiel 

associé ne dépend que de la distance r à l’origine: 𝑽 𝒓 = 𝑽 𝒓

et  𝑭 = −
𝒅𝑽 𝒓

𝒅𝒓

𝒓

𝒓

5.2 Mouvement dans un potentiel central

Ԧ𝐹 = −∇𝑉 Ԧ𝑟 = −

𝜕𝑉 𝑟

𝜕𝑥
𝜕𝑉 𝑟

𝜕𝑦

𝜕𝑉 𝑟

𝜕𝑧

; Ԧ𝑟 =
𝑥
𝑦
𝑧

;    𝑟 = Ԧ𝑟 = 𝑥2 + 𝑦2 + 𝑧2

𝜕𝑉 Ԧ𝑟

𝜕𝑥
=
𝜕𝑉 𝑟

𝜕𝑥
=
𝑑𝑉(𝑟)

𝑑𝑟

𝜕𝑟

𝜕𝑥
=
𝑑𝑉(𝑟)

𝑑𝑟

𝜕 𝑥2 + 𝑦2 + 𝑧2

𝜕𝑥
=
𝑑𝑉(𝑟)

𝑑𝑟

2𝑥

2 𝑥2 + 𝑦2 + 𝑧2
=
𝑑𝑉(𝑟)

𝑑𝑟

𝑥

𝑟

Ԧ𝐹 = −∇𝑉 Ԧ𝑟 = −

𝑑𝑉 𝑟
𝑑𝑟

𝑥
𝑟

𝑑𝑉 𝑟
𝑑𝑟

𝑦
𝑟

𝑑𝑉 𝑟
𝑑𝑟

𝑧
𝑟

= −
𝑑𝑉 𝑟

𝑑𝑟

1

𝑟

𝑥
𝑦
𝑧

= −
𝑑𝑉 𝑟

𝑑𝑟

1

𝑟
Ԧ𝑟

P

ො𝑥

ො𝑦

Ƹ𝑧
Ԧ𝐹

Ԧ𝐹Ԧ𝐹



• Potentiel central  Force centrale conservative: 

• 1) vecteur moment cinétique 𝑳𝑶 = 𝒓  𝒎𝒗 reste constant (𝑳𝑶 est conservé)

𝒅𝑳
𝑶

𝒅𝒕
= 𝑴𝑶 = 𝑶𝑷 𝑭 = 0 (𝑶𝑷 ∥ 𝑭)

⇒ mouvement dans le plan 𝒓 𝒗 ⏊ 𝑳𝑶 (𝑳𝑶 ne change jamais de direction)

• 2) L’aire balayée par unité de temps par le vecteur Ԧ𝑟 est constante (Loi des aires)

5.2 Mouvement dans un potentiel central

𝑑𝐴 =
1

2
𝑣 𝑑𝑡 𝑟 sin  

𝑑𝐴

𝑑𝑡
=
1

2
 Ԧ𝑟 Ԧ𝑣 =

1

2

𝐿𝑂
𝑚

Ԧ𝐹
Ԧ𝐹



Mouvement 
central

Moment 
cinétique 
constant

Loi des aires 
+ mouvement 
dans un plan

⇔ ⇔

par rapport au centre 𝑂 fixe

démo: mouvement central

Ԧ𝑟(𝑡 + 𝑑𝑡)

https://auditoires-physique.epfl.ch/experiment/7/mouvement-a-force-central


• 3) Conservation de l’énergie mécanique: 
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5.2 Mouvement dans un potentiel central

Moment 
cinétique

Energie 
mécanique

Coordonnées cylindriques avec  

(r, q ) dans le plan du mouvement

Ƹ𝑒𝑧 perpendiculaire au plan de 

mouvement

𝐿𝑂 = Ԧ𝑟 𝑚Ԧ𝑣 = 𝑚𝑟 Ƹ𝑒𝑟 ( ሶ𝑟 Ƹ𝑒𝑟 + 𝑟 ሶ𝜃 Ƹ𝑒𝜃) = 𝑚𝑟2 ሶ𝜃 Ƹ𝑒𝑧

𝐸 =
1

2
𝑚 Ԧ𝑣2+ 𝑉 𝑟 =

1

2
𝑚 ( ሶ𝑟 Ƹ𝑒𝑟 + 𝑟 ሶ𝜃 Ƹ𝑒𝜃)

2+ 𝑉 𝑟 =
𝑚 ሶ𝑟2

2
+

𝑚𝑟2 ሶ𝜃2

2
+ V r =

=
𝑚 ሶ𝑟2

2
+

𝐿0
2

2𝑚𝑟2
+ 𝑉 𝑟

Energie cinétique radiale Energie cinétique de rotation

ො𝑥

ො𝑦

𝐿𝑂 et E sont conservés    𝐿𝑂 et E sont des intégrales premières du mouvement



• Exemple:

- Potentiel gravitationnel :

𝑉(𝑟) = −𝐺𝑀𝑚/𝑟

• Deux type de trajectoires:

- E < 0 -> état lié

- E > 0 -> diffusion (r peut aller vers l’infini)

- Les lois de conservation de 𝐿 et 𝐸 ne 

permettent pas au point matériel de 

s’approcher trop près du centre de force    

(𝑟 > 𝑟min)

7

5.2 Mouvement dans un potentiel central 

démo: https://auditoires-physique.epfl.ch/experiment/112

𝑉eff(𝑟) = énergie potentielle effective

énergie

𝑟 = distance au centre
(unité arbitraire)

𝑉(𝑟) = −𝐺𝑀𝑚/𝑟
(comme exemple)

𝐿2/(2𝑚𝑟2)
= « potentiel centrifuge »

rmin

énergie mécanique 𝐸 > 0

𝐸 < 0

𝐸 =
𝑚 ሶ𝑟2

2
+

𝐿
0
2

2𝑚𝑟2
+ 𝑉 𝑟 =

𝑚 ሶ𝑟2

2
+ 𝑉𝑒𝑓𝑓(𝑟)

𝑉𝑒𝑓𝑓 𝑟 =
𝐿0

2

2𝑚𝑟2
+ 𝑉 𝑟

On se ramené à un problème à une dimension !

https://auditoires-physique.epfl.ch/experiment/112
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5.3 Géocentrisme

- Terre au centre.

- Soleil à vitesse constante sur un cercle légèrement 

décentré. 

- Planètes à vitesse constante sur des cercles 

(épicycles) dont les centres sont à vitesse constante 

sur d’autres cercles (déférents) centrés sur la Terre 



• De Revolutionibus Orbium Coelestium (1543)

- Modèle héliocentrique (inspiré par Aristarque 3eme siècle a.C.)

- Remet en question la vision géocentrique et le « modèle des deux sphères concentriques » 

(la sphère terrestre et la sphère des étoiles fixes)

9

5.3 Nicolas Copernic (1473−1543)

Qualitativement: explication plus simple du mouvement des planètes 

par rapport à la Terre et au Soleil… mais toujours des cercles !

Révolution de pensée:

la Terre (et donc l’humain) n’est plus au centre de l’Univers !
⇒ conflit avec l’Eglise



• Réalise l’importance de faire des mesures

précises du mouvement des planètes

(approche scientifique)

• Consacre de nombreuses années à l’observation

et la mesure des mouvements planétaires

• Tente de réconcilier les points de vue de l’Eglise avec celui de de Copernic  (Soleil 

tourne autour de la Terre immobile et planètes tournent autour du Soleil)
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5.3 Tycho Brahe (1546–1601)



• 1ère loi: (1609) 

Les trajectoires des planètes sont des ellipses dont 

le Soleil occupe l’un des foyers.

• 2ème loi: (lois des aires, 1609) 

Le rayon-vecteur du Soleil à une planète balaie des 

aires égales en des temps égaux.

• 3ème loi: (1619) 

Les carrés des périodes de révolution T sont 

proportionnels aux cubes des grands axes a:

11

5.3 Lois de Kepler (1571–1630)

Note:

Déviation très petite par rapport à une 

trajectoire parfaitement circulaire.

Rapport des axes de l’ellipse:

0.996 pour Mars

0.99986 pour la Terre

0.97 pour Pluton et Saturn

𝑇2

𝑎3
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒



• Qu’est-ce qui fait bouger les planètes ?

- Avant Galilée/Newton:

- Le mouvement « naturel » d’un corps est l’immobilité

- Une planète doit constamment être “poussée” ou “tirée” (par un ange !)

dans la direction de son mouvement, autrement elle s’arrête 

- Après Galilée/Newton:

- Le mouvement « naturel » d’un corps est rectiligne uniforme;

une planète dévie de sa ligne droite si une force non tangentielle agit sur elle

• Newton tire les conséquences des lois de Kepler:

• La loi des aires (2ème loi de Kepler) implique que la force 

subie par une planète est centrale 

⇒ cette force centrale attractive est exercée par le Soleil 

• En utilisant la 3ème loi de Kepler, Newton montre que la force 

est proportionnelle à Τ1 𝑟2 (𝑟 =distance Soleil-planète)

• A partir de là, il prédit une trajectoire elliptique ! (1ère loi)

12

5.4 Galilée (1564–1642), Newton (1642–1727):

le développement de la loi de la gravitation

lois de la 
gravitation 
universelle ⇐

Ԧ𝐹

Ԧ𝐹



• Moment cinétique :

• 2ème loi de Kepler (= loi des aires) :

• 3ème loi de Kepler :
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5.4 « Découverte » de la force en 1/r2

(dans le cas particulier d’une orbite circulaire de rayon r)

𝐿0 = Ԧ𝑟  𝑚Ԧ𝑣 = 𝑚Ԧ𝑟  (𝜔 Ԧ𝑟) = 𝑚𝑟2𝜔

𝐿0 = 𝑐𝑠𝑡𝑒  𝜔 = 𝑐𝑠𝑡𝑒  𝑣 = 𝜔𝑟 = 𝑐𝑠𝑡𝑒

mouvement circulaire uniforme: 

𝐹 = 𝑚𝑎 = 𝑚𝜔2𝑟 = 𝑚
𝑣2

𝑟
=
𝑚

𝑟

2𝜋𝑟

𝑇

2

𝑇2 = 𝐶𝑟3 𝐹 =
𝑚

𝑟

2𝜋𝑟

𝑇

2

=
𝑚

𝑟

2𝜋𝑟 2

𝐶𝑟3
=
4𝜋2𝑚

𝐶

1

𝑟2



T est la période = le temps nécessaire 

pour faire un tour

m
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5.4 Action et réaction (3ème loi de Newton)

Application aux forces gravitationnelles:

cas du système Terre (T) – Lune (L)

« A chaque action, il y a toujours une réaction 

égale et opposée; si un corps exerce une force sur 

un autre, cet autre corps exerce une force de norme 

égale et de sens opposé sur le premier »

Ԧ𝐹𝑇 → 𝐿 + Ԧ𝐹𝐿 → 𝑇 = 0

𝐹𝑇 → 𝐿 =
4𝜋2𝑚

𝐿

𝐶
𝑇

1

𝑑2

𝐹𝐿 → 𝑇 =
4𝜋2𝑚

𝑇

𝐶
𝐿

1

𝑑2


4𝜋2𝑚

𝐿

𝐶
𝑇

=
4𝜋2𝑚

𝑇

𝐶
𝐿


4𝜋2

𝑚
𝑇
𝐶
𝑇

=
4𝜋2

𝑚
𝐿
𝐶
𝐿

= 𝐺

G est la constante de gravitation universelle 

(indépendante du corps) 𝐹𝑇 → 𝐿 =
4𝜋2𝑚𝐿

𝐶𝑇

1

𝑑2
=
4𝜋2𝑚𝐿𝑚𝑇

𝑚𝑇𝐶𝑇

1

𝑑2
=
𝐺𝑚𝐿𝑚𝑇

𝑑2

𝐹𝐿 → 𝑇 =
4𝜋2𝑚𝑇

𝐶𝐿

1

𝑑2
=
4𝜋2𝑚𝐿𝑚𝑇

𝑚𝐿𝐶𝑇

1

𝑑2
=
𝐺𝑚𝐿𝑚𝑇

𝑑2
G = (6.673 ± 0.010)×10–11 m3 kg–1 s–2
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5.4 Loi de la gravitation universelle (Newton)

L’interaction de gravitation entre deux corps s’exprime 

par une force centrale attractive proportionnelle aux 

masses des deux corps et inversement proportionnelle 

au carré de leur distance

« Philosophiae Naturalis Principia Mathematica » (1687)

G = constante de gravitation universelle

G = (6.673 ± 0.010)×10–11 m3 kg–1 s–2

démo: balance de Cavendish

https://auditoires-physique.epfl.ch/experiment/4/balance-de-cavendish
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5.4 Balance de Cavendish
démo: balance de Cavendish

𝐿𝑂 = 𝑂𝐴 𝑚 Ԧ𝑣𝐴 + 𝑂𝐵 𝑚 Ԧ𝑣𝐵 = 2𝑚𝑟𝑣 Ƹ𝑧

Mouvement circulaire : 𝑣 = 𝜔𝑟 = ሶ𝜃𝑟
𝐿𝑂 = 2𝑚𝑟2 ሶ𝜃 Ƹ𝑧

𝑴𝑶 =
𝒅𝑳𝑶
𝒅𝒕

𝑑𝐿𝑂
𝑑𝑡

= 2𝑚𝑟2 ሷ𝜃 Ƹ𝑧

𝑀𝑂 =෍𝑀𝑂,𝑖 = 𝑀𝑡𝑜𝑟 +𝑀𝑓𝑟𝑜𝑡 +𝑀𝑔𝑟𝑎𝑣

Couple du fil de torsion: 𝑀𝑡𝑜𝑟 = −𝑘𝜃 Ƹ𝑧

Couple d’amortissement visqueux: 𝑀𝑓𝑟𝑜𝑡 = −𝐶 ሶ𝜃 Ƹ𝑧

Couple forces entre masses: 𝑀𝑔𝑟𝑎𝑣 = 2Ԧ𝑟 ∧ Ԧ𝐹 = 2𝐺
𝑚𝑀

𝑑2
𝑟 Ƹ𝑧

Or

A

B

fil de torsion

d

Ƹ𝑧

2𝑚𝑟2 ሷ𝜃 + 𝐶 ሶ𝜃 + 𝑘𝜃 = 2𝐺
𝑚𝑀

𝑑2
𝑟

Eq. oscillateur amorti: pour 𝑡 → ∞

 ሶ𝜃 → 0, ሷ𝜃 → 0  𝜃 → 𝜃𝑓𝑖𝑛

𝜃𝑓𝑖𝑛 = 2𝐺
𝑚𝑀

𝑘𝑑2
𝑟 𝐺 = 𝜃𝑓𝑖𝑛

𝑘𝑑2

2𝑚𝑀𝑟

Théorème du moment cinétique:

Vue de dessus

https://auditoires-physique.epfl.ch/experiment/4/balance-de-cavendish


• Une masse ponctuelle 𝑀 produit un 

champ gravitationnel Ԧ𝑔(Ԧ𝑟) à la position Ԧ𝑟 :

Force subie par une masse 𝑚 à cette position : 

• Quel est le champ gravitationnel produit par une masse 𝑀 non ponctuelle supposée 

sphérique de rayon 𝑅 et homogène ?

(par exemple la Terre)

Réponse: si 𝑟 ≥ 𝑅, le même champ que

produirait une masse 𝑀 ponctuelle

située au centre le la Terre

(conséquence de la forme en Τ1 𝑟2)
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5.5 Champ de gravitation

TerreEx.:

R = 6371 km  g(R) = 9.81 m/s

Everest: h = 8.85 km  g(R+h) = 9.78 m/s
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5.5 Energie potentielle gravitationelle

Terre

න
𝑅

𝑟

Ԧ𝐹 · 𝑑 Ԧ𝑟 = න
𝑅

𝑟

𝑚 Ԧ𝑔(Ԧ𝑟) · 𝑑 Ԧ𝑟 = න
𝑅

𝑟

−∇𝑉 Ԧ𝑟 · 𝑑 Ԧ𝑟 = 𝑉 𝑅 − 𝑉 𝑟

Elle représente le travail que il faut fournir pour amener un point matériel 

de masse m (avec vitesse nulle) de la surface de la Terre à une hauteur h:

𝑅׬
𝑟
𝑚 Ԧ𝑔(Ԧ𝑟) · 𝑑 Ԧ𝑟 = 𝑅׬

𝑟
−𝑚

𝐺𝑀

𝑟2
Ԧ𝑟

𝑟
· 𝑑 Ԧ𝑟 = 𝑅׬

𝑟
−𝑚

𝐺𝑀

𝑟2
𝑑𝑟

= 𝑚
𝐺𝑀

𝑟


𝑅

𝑟

=
𝐺𝑀𝑚

𝑟
−

𝐺𝑀𝑚

𝑅
= 𝑉 𝑅 − 𝑉 𝑟

𝑉(𝑟) = −
𝐺𝑀𝑚

𝑟
Energie potentielle gravitationnelle

1

𝑟
=

1

𝑅 + ℎ
=

𝑅 − ℎ

𝑅2 − ℎ2
≅
𝑅 − ℎ

𝑅2
=
1

𝑅
−

ℎ

𝑅2

𝑔 =
𝐺𝑀

𝑅2
= 9.8 m/s2

accélération de gravitée terrestre

Objet de masse m à hauteur h par rapport à la surface de la Terre

𝑉 𝑟 = −
𝐺𝑀𝑚

𝑟
= −

𝐺𝑀𝑚

𝑅
+
𝐺𝑀𝑚

𝑅2
ℎ = 𝑐𝑠𝑡𝑒 + 𝑚𝑔ℎ
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5.5 Ex.: Terre en rotation autour du Soleil

Potentiel central: 

1) l’énergie mécanique est conservée

2) Le moment cinétique est conservé



−
𝐺𝑀𝑚

𝐷
+
1

2
𝑚𝑣𝐴

2 = −
𝐺𝑀𝑚

𝑑
+
1

2
𝑚𝑣𝑃

2

𝐷𝑚𝑣𝐴 = 𝑑𝑚𝑣𝑃
𝑣𝐴 =

𝑑

𝐷
𝑣𝑃

𝑣𝑃
2 = 𝑣𝐴

2 + 2𝐺𝑀(
1

𝑑
−
1

𝐷
)

 𝑣𝑃
2 = 2𝐺𝑀

𝐷

𝑑

1

𝐷 + 𝑑

Determination de la masse M du Soleil

𝑇2 = 𝐶𝐷3 =
4𝜋2

𝑀𝐺
𝐷33éme loi de Kepler

𝐹𝑆 → 𝑇 =
4𝜋2𝑀𝑚

𝑀𝐶

1

𝑟2
=
𝐺𝑀𝑚

𝑟2
𝐶 =

4𝜋2

𝑀𝐺


𝑀 =
4𝜋2

𝑇2𝐺
𝐷3

Vitesse de la Terre aux apsides

𝑑

𝑀

𝑚
hiver

automne

printemps

été

Ligne des apsides

Équinoxe 21 Mars

Équinoxe 23 Sept

Solstice 

21 Juin

Solstice 21 

Déc

Périgée 3 JanApogée 

3 Juillet

Ԧ𝑣𝑃

Ԧ𝑣𝐴

𝐷

𝑑 = 147 106𝑘𝑚

𝐷 = 152 106𝑘𝑚
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5.5 Ex.: Terre en rotation autour du Soleil

Energie mécanique totale de la Terre

𝐸𝑇 = −
𝐺𝑀𝑚

𝑑
+
1

2
𝑚𝑣𝑃

2 = −
𝐺𝑀𝑚

𝑑
+
1

2
𝑚2𝐺𝑀

𝐷

𝑑

1

𝐷 + 𝑑
= −

𝐺𝑀𝑚

𝑑
1 −

𝐷

𝐷 + 𝑑
= −

𝐺𝑀𝑚

𝐷 + 𝑑

𝑉𝑒𝑓𝑓 𝑟𝑚𝑖𝑛 = −
𝑚

2

𝐺𝑀𝑚

𝐿𝑆

2

= −
𝑚

2

𝐺𝑀𝑚

𝑑𝑚𝑣𝑝

2

= −
𝑚

2

𝐺𝑀

𝑑

2
𝑑 𝐷 + 𝑑

2𝐺𝑀𝐷
= −

𝐺𝑀𝑚

4

𝐷 + 𝑑

𝑑𝐷
= 𝑉𝑚𝑖𝑛

𝑉𝑒𝑓𝑓 𝑟 =
𝐿𝑆

2

2𝑚𝑟2
+ 𝑉 𝑟 =

𝐿𝑆
2

2𝑚𝑟2
−
𝐺𝑀𝑚

𝑟

𝑑𝑉𝑒𝑓𝑓 𝑟

𝑑𝑟
= −

𝐿𝑆
2

𝑚𝑟3
+
𝐺𝑀𝑚

𝑟2
= 0 𝑟𝑚𝑖𝑛 =

𝐿𝑆
2

𝐺𝑀𝑚2

𝐸𝑇 > 𝑉𝑚𝑖𝑛 ?  −
𝐺𝑀𝑚

𝐷 + 𝑑
> −

𝐺𝑀𝑚

4

𝐷 + 𝑑

𝑑𝐷

−
1

𝐷 + 𝑑
> −

𝐷 + 𝑑

4𝑑𝐷
 −

4𝑑𝐷

𝐷 + 𝑑 2
> −1

-0.997

Energie potentielle effective



=
La trajectoire décrite par la Terre est très proche à 

une circonférence

Si 𝐸 = 𝑉𝑚𝑖𝑛, un seul valeur de r est permis   orbite circulaire

𝑉𝑒𝑓𝑓 𝑟

E

𝑉(𝑟) = −𝐺𝑀𝑚/𝑟

𝐿2/(2𝑚𝑟2)
« potentiel centrifuge »

rmin

𝐸𝑇

r

𝑉𝑚𝑖𝑛


